Energy and Multiplicity.
Optimization methods.

Friday, September 1, 2016
BME/CHE/PHY 558, Physical & Quantitative Biology
Rutgers University: Chemical Thermodynamics
Lecturer: Gábor Balázsi
Equilibrium points as extrema

[Diagram showing a curve with two points labeled as stable and unstable.]
Max-multiplicity gives the most likely outcome

Five molecules in a dividing cell:

Which configuration(s) will have the highest multiplicity?

What will be the highest multiplicity?

What will be its probability?

E.g., if all molecules in cell #1:

$$W(5,0) = \frac{5!}{5!0!} = 1$$

<table>
<thead>
<tr>
<th>Cell 1</th>
<th>Cell 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>12345</td>
</tr>
</tbody>
</table>
Max-multiplicity gives the most likely outcome

Which configuration(s) will have the highest multiplicity?

What will be the highest multiplicity?

\[W(3, 2) = \frac{5!}{3!2!} = 10 \]

What will be its probability?

\[P(3, 2) = p^3(1 - p)^2 \frac{5!}{3!2!} = \left(\frac{1}{2}\right)^5 10 = 0.3125 \]
Effect of max-multiplicity is stronger at high N

Maxima given by:

$$\left. \frac{dW}{dn} \right|_{n^*} = 0$$

$$n^* = \frac{n}{2}$$

As a force increasing with N...
But there is no mechanical force at all.
Degrees of freedom and constraints

• Degrees of freedom are parameters that the system can change.

• Constraints are restrictions imposed on the system’s freedom.
Basic Problem of Thermodynamics

Goal: determine the equilibrium state that eventually results after the removal of internal constraints in a closed, composite system.
Basic Problem of Thermodynamics

Goal: determine the equilibrium state that eventually results after the removal of internal constraints in a closed, composite system.

\[U^{(F)}, V^{(F)}, N_1^{(F)}, N_2^{(F)}, \ldots, N_M^{(F)} \]
Why do gases exert pressure?

Imagine 3 spheres that could occupy 3, 4 or 5 cells. Which case has highest multiplicity W?

Degree of freedom: Volume = number of spatial cells.

$W(A) = \frac{5!}{2!3!} = 10$
$W(B) = \frac{4!}{3!1!} = 4$
$W(C) = \frac{3!}{0!3!} = 1$

Spheres tend to occupy the largest possible volume (at constant temperature).

<table>
<thead>
<tr>
<th>Case</th>
<th>Configuration</th>
<th>Volume</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>5 cells</td>
<td>10</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>4 cells</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>3 cells</td>
<td>1</td>
</tr>
</tbody>
</table>
Why do materials diffuse?

Imagine a permeable wall that separates 2 containers with black and white spheres. Degree of freedom: number of same-colored spheres on either side.

Particles tend to mix according to their relative fractions (here, 0.5 of each) on both sides.

<table>
<thead>
<tr>
<th>Case</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>![Diagram A]</td>
<td>(W(A) = \frac{4! \times 4!}{2! \times 2! \times 2! \times 2!} = 36)</td>
</tr>
<tr>
<td>B</td>
<td>![Diagram B]</td>
<td>(W(B) = \frac{4! \times 4!}{3! \times 1! \times 1! \times 3!} = 16)</td>
</tr>
<tr>
<td>C</td>
<td>![Diagram C]</td>
<td>(W(C) = \frac{4! \times 4!}{4! \times 0! \times 0! \times 4!} = 1)</td>
</tr>
</tbody>
</table>

Permeable Barrier →
Why is rubber elastic?

Imagine a polymer chain with the left end fixed.

DoF: distance of the other end from the wall.

Multiplicity predicts that rubber tends to be neither completely extended nor completely flattened.
Work, energy, and heat
Definitions

Work is the effect of force, or it arises from energy conversion.

Energy is the capacity of a system to do work. It is always conserved.

- **Kinetic energy:** $K = \frac{mv^2}{2}$, where m is mass, v is velocity. Capacity to do work by movement.

- **Potential energy:** Capacity to do work based on position.

- **Internal energy:** Total energy of all particles + interactions in a system

Heat is a form of energy transfer specific to thermodynamics. It alters the internal energy of a system.
Forces and work

Assume a spring attached to the wall with spring constant k_s and equilibrium position $x_1=0$. What is the work to extend the spring very slowly from position $x_1=0$ to position x_2?

Force exerted by spring:

$$f_s = -k_s (x - x_1)$$

Applied force opposes the spring’s force:

$$f_{ap} = -f_s = k_s (x - x_1)$$

Work done by applied force:

$$w = \int_{x_1}^{x_2} f_{ap} \, dx = \frac{k_s}{2} x_2^2$$

= potential energy
First Law of Thermodynamics

First law: Energy is conserved. Change in energy (ΔU) = heat (q) + work (w).

\[\Delta U = q + w \]

- ΔU : change of system’s internal energy
- q : heat flowing into the system
- w : work done on the system
First Law: a financial analogy

\[\Delta U = q - w \]

- **\(\Delta U \):** change in account balance
- **\(q \):** interest (+); banking fees (-)
- **\(w \):** salary (+), withdrawals (-)
First Law: a human analogy

\[\Delta U = q - w \]

\(\Delta U \): change of weight

\(q \) : food intake (calories); heat dispersed

\(w \) : work done by the system, exercise

World map of diet
Second Law of Thermodynamics

Systems change spontaneously to maximize the multiplicity of their microstates.

\[W = \max \]
Second Law: Why do materials absorb heat?

Assume we have 3 particles and energy levels \(\varepsilon = 0, 1, 2, 3 \ldots \)
How many ways exist to achieve internal energy \(U = 0, 1, 2, 3 \) ?

Systems tend to increase their internal energy.
If you give them heat, they take it.
Second Law: Why and where does heat flow?

Assume 2 systems with energy levels $\epsilon=0, 1...$ and internal energies $U_A=2, U_B=4$.

\[
W_A = \frac{10!}{2!8!} = 45 \quad W_B = \frac{10!}{4!6!} = 210 \quad W_{total} = W_A W_B = 9450
\]

What happens if we set these systems in contact?

If $U_A=3, U_B=3$: $W_{total} = W_A W_B = \left(\frac{10!}{3!7!}\right)^2 = 14,400$ Heat flows from warm to cold.
Finding maxima and minima
Reminder: extrema of univariate functions

Continuous, smooth functions have minima or maxima where their derivative = 0.

Example: $f(x) = (x - 2)^2 \quad \frac{df}{dx} = 2(x - 2) = 0 \quad x^* = 2$

$\frac{d^2 f}{dx^2} = 2 > 0 \quad$ It is a minimum.
Functions of two or more variables

Often a function depends on more than one “independent” variable.

Functions of two variables can be represented as surfaces.

\[f(x, y) = \text{dependent variable} \]
\[x, y = \text{independent variables} \]
South Korea: Height vs. longitude and latitude

This is a topographical map.

The color indicates the height versus geographical coordinates.

What are extrema and how do we find them?

Height=dependent variable

Longitude=independent variable

Latitude=independent variable

Height(Longitude, Latitude)
Long Island home prices

26 of the most expensive zip codes in 2015!

Price = f(x,y,T) (location and age)
Example: A function of at least 4 variables

Temperature = T(Longitude, Latitude, Altitude, time).
Partial derivatives are slopes of tangents to multivariate functions in the direction of a given independent variable.

Calculation: As for any derivative, but holding all independent variables fixed except for one.
Partial derivatives: An example

Take a function (paraboloid):

\[f(x, y) = x^2 + y^2 \]

The partial derivatives are:

\[\frac{\partial f}{\partial x} = 2x \quad \frac{\partial f}{\partial y} = 2y \]

For a specific point:

\[\frac{\partial f}{\partial x} \bigg|_{(2,-1)} = 4 \]
\[\frac{\partial f}{\partial y} \bigg|_{(2,-1)} = -2 \]
Higher-order partial derivatives

Partial derivatives are functions of the same independent variables as the original function.

Higher-order partial derivatives can be defined, such as:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

Example: Two-dimensional Gaussian

$$f(x, y) = Ae^{-\left[\frac{x^2}{2\sigma^2} + \frac{y^2}{2\sigma^2} \right]}$$
Estimating small changes

If we know a function in point x_0, we can estimate it nearby with a Taylor expansion:

$$f(x) = f(x_0) + \frac{1}{1!} \frac{df}{dx} \bigg|_{x=x_0} (x-x_0) + \frac{1}{2!} \frac{d^2f}{dx^2} \bigg|_{x=x_0} (x-x_0)^2 + \ldots$$

This is useful for estimating transcendental functions:

$$e^x = 1 + x + \frac{x^2}{2} + \ldots$$

For infinitesimal changes in x, the change in f is the differential of f:

$$df(x) = \frac{df}{dx} \bigg|_{x=x_0} dx$$
Multivariate functions: Total differential

Taylor expansion near \([x_0, y_0]\):

\[
f(x, y) = f(x_0, y_0) + \Delta x \frac{\partial f}{\partial x}\bigg|_{x_0,y_0} + \Delta y \frac{\partial f}{\partial y}\bigg|_{x_0,y_0} + \frac{1}{2} \left[\Delta x^2 \frac{\partial^2 f}{\partial x^2}\bigg|_{x_0,y_0} + \Delta y^2 \frac{\partial^2 f}{\partial y^2}\bigg|_{x_0,y_0} + 2\Delta x\Delta y \frac{\partial^2 f}{\partial x\partial y}\bigg|_{x_0,y_0} \right] + \ldots
\]

For infinitesimal changes we obtain the total differential:

\[
df = \sum_{i=1}^{N} \frac{\partial f}{\partial x_i}\bigg|_{x_j \neq i} \, dx_i
\]

How much does the function change if you take steps in all possible directions?

For two dimensions:

\[
df(x, y) = \frac{\partial f}{\partial x}\bigg|_{y} \, dx + \frac{\partial f}{\partial y}\bigg|_{x} \, dy
\]
Extrema: Where all partial derivatives are = 0

At extremum points, \(f \) is flat \textbf{in all directions} – it stays constant as \(x \) and \(y \) change infinitesimally.

This means that the differential of \(f \) is 0: \[
\frac{df}{dx} (x, y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0
\]

Since \(dx \) and \(dy \) are independent, this is only assured if:

\[
\frac{\partial f}{\partial x} = 0 \quad \frac{\partial f}{\partial y} = 0
\]

More generally:

\[
\frac{\partial f}{\partial x_i} = 0 \quad \text{For all } i=1, 2, 3, \ldots
\]