Natural and synthetic gene regulatory networks

Friday, November 17, 2017
BME/CHE/PHY 558, Physical & Quantitative Biology
Rutgers University: Chemical Thermodynamics
Lecturer: Gábor Balázsi
Challenge: The larger picture

How does gene expression depend on: promoter kinetics, mRNA, protein synthesis/decay?

Write down the relevant reactions!
Reactions: The larger picture

How does gene expression depend on: promoter kinetics, mRNA, protein synthesis/decay?

Promoter:

\[D \xleftarrow{k_{ON}} B \xrightarrow{k_{OFF}} \]

D=empty DNA
B=Polymerase-bound DNA

mRNA, M:

\[B \xrightarrow{k_M} M + B \]

\[M \xrightarrow{g_M} \emptyset \]

Protein, P:

\[M \xrightarrow{k_P} P + M \]

\[P \xrightarrow{g_P} \emptyset \]
Models of gene expression

Models of gene expression focus on: promoter, mRNA, protein.

Promoter:

\[
\begin{align*}
D & \overset{k_{ON}}{\underset{k_{OFF}}{\rightleftharpoons}} B \\
\frac{dD}{dt} &= -k_{ON}D + k_{OFF}B \\
D + B &= \text{const} = 1
\end{align*}
\]

mRNA:

\[
\begin{align*}
B & \overset{k_M}{\rightarrow} M + B \\
\frac{dM}{dt} &= k_M B - g_M M
\end{align*}
\]

Protein:

\[
\begin{align*}
M & \overset{k_P}{\rightarrow} P + M \\
\frac{dP}{dt} &= k_P M - g_P P
\end{align*}
\]
Gene expression reflects promoter states

Promoter: \[k_{ON} (1 - B) = k_{OFF} B \]

mRNA: \[M = \frac{k_M}{g_M} B \]

Protein: \[P = \frac{k_P}{g_P} M \]
\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} B \]
\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} \frac{k_{ON}}{k_{OFF} + k_{ON}} \]
Definition of Networks (Graphs)

- A network (graph) consists of interconnected objects

- Components of a network:
 - Nodes (vertices)
 - Links (edges)
Gene-regulatory networks consist of regulatory interactions between genes.

- Proteins called transcription factors can bind to promoter regions.
- Activator transcription factors can enhance the synthesis of other proteins.
- Repressor transcription factors inhibit gene activity.
Measuring gene expression

Intracellular proteins are invisible. How to measure their quantity?

- The GFP protein shines green.
- Green cells contain more of the original protein as well.
Model for gene repression

We focus on: repressor (R), repressor-bound promoter (B), unbound (D), mRNA (M), protein (P).

![Diagram of gene repression model with equations and states]

Promoter: $D + R \xleftarrow{k_{ON}} B \xrightarrow{k_{OFF}} D$

$$\frac{dD}{dt} = -k_{ON} DR + k_{OFF} B$$

$$D + B = \text{const} = 1$$

mRNA: $D \xrightarrow{k_M} M + D$

$$\frac{dM}{dt} = k_M D - g_M M$$

Protein: $M \xrightarrow{k_P} P + M$

$$\frac{dP}{dt} = k_P M - g_P P$$
Gene repression

Promoter: \(k_{ON} (1 - B) R = k_{OFF} B \) \[D = 1 - B = \frac{K}{K + R} \] \[K = \frac{k_{OFF}}{k_{ON}} \]

mRNA: \[M = \frac{k_M}{g_M} D \]

Protein: \[P = \frac{k_P k_M}{g_P g_M} \frac{K}{K + R} \]
Model of gene activation

We focus on: activator (A), promoter bound (B), unbound (D), mRNA (M), protein (P).

Promoter:

\[D + A \xrightleftharpoons[k_{OFF}]^{k_{ON}} B \]

\[\frac{dD}{dt} = -k_{ON}DA + k_{OFF}B \]

\[D + B = \text{const} = 1 \]

mRNA:

\[B \xrightarrow{k_M} M + B \]

\[\frac{dM}{dt} = k_M B - g_M M \]

Protein:

\[M \xrightarrow{k_P} P + M \]

\[\frac{dP}{dt} = k_P M - g_P P \]
Gene activation

Promoter:

\[k_{ON} (1 - B) A = k_{OFF} B \]

\[B = \frac{A}{K + A} \]

\[K = \frac{k_{OFF}}{k_{ON}} \]

mRNA:

\[M = \frac{k_M}{g_M} B \]

Protein:

\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} \frac{A}{K + A} \]
DNA states: Two activator binding sites

Use binding polynomials: \[QD = D \left(1 + K_1A + K_2A + K_1K_2A^2\right) \]

Probability of empty promoter:
\[D = \frac{1}{1 + K_1A + K_2A + K_2K_1A^2} \]

Promoter bound by 1 activator:
\[B_1 = \frac{K_1A + K_2A}{1 + K_1A + K_2A + K_2K_1A^2} \]

Promoter bound by 2 activators:
\[B_{12} = \frac{K_2K_1A^2}{1 + K_1A + K_2A + K_2K_1A^2} \]
Protein: two activator binding sites

Protein synthesis, empty promoter:

\[Da_0 = \frac{a_0}{1 + K_1A + K_2A + K_2K_1A^2} \]

Protein, 1 activator-bound promoter:

\[B_1a_1 = \frac{(K_1 + K_2)AAa_1}{1 + K_1A + K_2A + K_2K_1A^2} \]

Protein, promoter + 2 activators bound:

\[B_2a_2 = \frac{K_2K_1A^2a_2}{1 + K_1A + K_2A + K_2K_1A^2} \]

Total protein synthesis:

\[P = \frac{a_0 + (K_1 + K_2)AAa_1 + K_2K_1A^2a_2}{1 + K_1A + K_2A + K_2K_1A^2} \]
Complete activator cooperativity

Promoter: \[k_{ON} (1 - B) A^n = k_{OFF} B \]

mRNA: \[M = \frac{k_M}{g_M} B \]

Protein: \[P = \frac{k_P}{g_P} \frac{k_M}{g_M} \frac{A^n}{K^n + A^n} \]

\[K = \sqrt[n]{\frac{k_{OFF}}{k_{ON}}} \]

\[n=5 \]

\[0 \quad 10^{-5} \quad 10^0 \quad 10^5 \]
Comparison: Single activator

Promoter: \[k_{ON}(1 - B)A = k_{OFF}B \]

mRNA: \[M = \frac{k_M}{g_M} B \]

Protein: \[P = \frac{k_P}{g_P} \frac{k_M}{g_M} B \]

\[B = \frac{A}{K + A} \]

\[K = \frac{k_{OFF}}{k_{ON}} \]
Activation + Repression: the lac operon

The bacterium really likes glucose. It wants nothing else when glucose is present. However, when there is no glucose, it has to eat something... Such as lactose.

<table>
<thead>
<tr>
<th>Glucose</th>
<th>Lactose</th>
<th>Eat lactose?</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
<td>NO</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>NO</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>NO</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>YES</td>
</tr>
</tbody>
</table>

How can the cell decide? By regulating the lac operon (3 lactose-eating genes: *lacZ, lacY, lacA*).
Cellular logic: the lac operon

<table>
<thead>
<tr>
<th>Glucose</th>
<th>Lactose</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Diagram:

1. **Glucose +, Lactose -**
 - Repressor active
 - Very little lac mRNA

2. **Glucose +, Lactose +**
 - Inducer-repressor inactive
 - Very little lac mRNA

3. **Glucose -, Lactose +**
 - Inducer-repressor active
 - Abundant lac mRNA
Real gene regulatory networks are large and complex
Other examples of large, complex networks

Internet

Protein-protein interaction network

Social network

Neuronal network
Biological network motifs:
some subgraphs occur more frequently than expected

<table>
<thead>
<tr>
<th>Gene regulation (transcription)</th>
<th></th>
<th>Feed-forward loop (FFL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Edges</th>
<th>N_{real}</th>
<th>$N_{\text{rand}} \pm \text{SD}$</th>
<th>Z score</th>
<th>N_{real}</th>
<th>$N_{\text{rand}} \pm \text{SD}$</th>
<th>Z score</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>424</td>
<td>519</td>
<td>40</td>
<td>7 ± 3</td>
<td>10</td>
<td>203</td>
<td>47 ± 12</td>
<td>13</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>685</td>
<td>1,052</td>
<td>70</td>
<td>11 ± 4</td>
<td>14</td>
<td>1812</td>
<td>300 ± 40</td>
<td>41</td>
</tr>
</tbody>
</table>

Pillowcase, Transylvania: **22 tulips**

Escherichia coli (Ishihara, 2005)
67 genes and 102 regulations in 42 FFLs
Feedback regulation: a network motif

Core regulatory network of *Escherichia coli*
Feedback loops: When a gene controls itself

Types of feedback:

<table>
<thead>
<tr>
<th></th>
<th>Direct feedback (autoregulation)</th>
<th>Indirect feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative (−)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Short feedback (autoregulation and 2-gene feedback) are common motifs in transcriptional networks (~20% of yeast TFs have feedback regulation).

Examples:

- **STE12**: Yeast mating
- **ROX1**: Yeast hypoxia
- **SOX2** and **NANOG**: Human embryonic stem cells
Synthetic Biology:

Building biological systems for predefined purposes

making oscillators, switches, gates, biofuels, medicine

Electronic components:
(transistors, resistors, capacitors, etc.)

- Standard
- Well-characterized
- Reliable
- Low noise
- No replication

Biological components:
(genes, promoters, RNA-s, etc.)

- Diverse
- Uncharacterized
- Mutate & evolve
- Noisy
- Replication
Cells as dynamical systems: Steady states (equilibria)

Equilibrium: when time derivative = 0

\[
\frac{dP}{dt} = k - \gamma P = 0
\]

Equilibrium: when \(\text{synthesis} = \text{degradation} \)

\[
P_{eq} = \frac{k}{\gamma}
\]
Overdamped systems: Steady states (equilibria)

Analogy: parachute equation of motion

\[\frac{dv}{dt} = g - \frac{\zeta}{m} v \]

Friction force:

\[F_f = \zeta v \]

Equilibrium: when time derivative = 0

\[\frac{dP}{dt} = k - \gamma P = 0 \]

\[P_{eq} = \frac{k}{\gamma} \]
Gene 1 = lacI
Promoter 1

Gene 2 = tetR
Promoter 2

TetR

LacI

IPTG

ATc

Gene 2 ON

Gene 1 ON

Toggle switch: dynamics

Equations (ODE system)

Protein 1 = u; Protein 2 = v

\[
\frac{du}{dt} = \frac{\alpha_1}{1 + v^\beta} - u
\]

\[
\frac{dv}{dt} = \frac{\alpha_2}{1 + u^\gamma} - v
\]

NR: A regulatory cascade

\[
\frac{dx}{dt} = a - bxy
\]

- **synth.**
- **degr.**

Potential

Repressor, x

Rate of change

Synthesis
Degradation

Higher ATc
NR gene circuit: dose-response

[Diagram showing the NR gene circuit with tetR, Atc, and GFP, and graphs for fluorescence mean and noise (CV, %) vs. [ATc] (ng/ml)].
NR: gene expression at intermediate induction
The “Linearizer”

TetR represses its own promoter

- Negative Feedback
- Identical promoters

\[\frac{dx}{dt} \approx aF(x) - bxy \]

Higher ATc

\[F(x) = \frac{K^n}{K^n + x^n} \]
Comparison: NR and NF mean and CV

Nevozhay et al., *PNAS* **106**:5123, 2009
NF: gene expression at intermediate induction