Natural and synthetic gene regulatory networks

Friday, November 13, 2015

SBU: CHE/PHY558, Physical & Quantitative Biology
Lecturer: Gábor Balázsi
Networks (Graphs)

- A *network (graph)* is a system of interconnected objects

- Components of a network:
 - *Nodes (vertices)*
 - *Links (edges)*, which can be:
 - Directed
 - Undirected
 - Signed (+/-)
 - Unsigned
Examples of networks

Internet

Protein-protein interaction network

Social network

Neuronal network
Gene-regulatory networks consist of regulatory interactions between genes.

- Some proteins called transcription factors can bind to promoter regions.
- Some transcription factors (activators) can activate the synthesis of other proteins.
- Others (repressors) can inhibit it.
Real gene regulatory networks are large and complex
The lac operon of the bacterium *Escherichia coli* consists of 3 genes: *lacZ*, *lacY*, *lacA*.

Without lactose, the repressor LacI binds DNA and prevents transcription of these genes.
Example: lac operon ON

When lactose (inducer) appears, it binds the repressor LacI, forcing it to change conformation.

LacI can no longer bind DNA, thus allowing polymerase to transcribe *lacZ*, *lacY*, *lacA*.
Model of gene repression

We focus on: repressor (R), promoter bound (B), unbound (D), mRNA (M), protein (P).

Promoter:

\[
\begin{align*}
D + R & \xrightleftharpoons[k_{OFF}]{k_{ON}} B \\
\frac{dD}{dt} &= -k_{ON} DR + k_{OFF} B \\
D + B &= \text{const} = 1
\end{align*}
\]

mRNA:

\[
\begin{align*}
D & \xrightarrow{k_M} M + D \\
\frac{dM}{dt} &= k_M D - g_M M
\end{align*}
\]

Protein:

\[
\begin{align*}
M & \xrightarrow{k_P} P + M \\
\frac{dP}{dt} &= k_P M - g_P P
\end{align*}
\]
Gene expression versus repressor level

Promoter: \(k_{ON} (1 - B)R = k_{OFF} B \)

\[D = 1 - B = \frac{K}{K + R} \]

\[K = \frac{k_{OFF}}{k_{ON}} \]

mRNA:

\[M = \frac{k_M}{g_M} B \]

Protein:

\[P = \frac{k_P}{g_P} M \]

\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} B \]

\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} \frac{K}{K + R} \]
Model of gene activation

We focus on: activator (A), promoter bound (B), unbound (D), mRNA (M), protein (P).

Promoter:

\[D + A \xrightleftharpoons[k_{OFF}]{k_{ON}} B \]

\[\frac{dD}{dt} = -k_{ON}DA + k_{OFF}B \]

\[D + B = const = 1 \]

mRNA:

\[B \xrightarrow{k_M} M + B \]

\[\frac{dM}{dt} = k_M B - g_M M \]

Protein:

\[M \xrightarrow{k_P} P + M \]

\[\frac{dP}{dt} = k_P M - g_P P \]
Gene expression versus activator level

Promoter: \(k_{ON} (1 - B) A = k_{OFF} B \) \[B = \frac{A}{K + A} \]
\[K = \frac{k_{OFF}}{k_{ON}} \]

mRNA: \(M = \frac{k_M}{g_M} B \)

Protein: \(P = \frac{k_p}{g_P} M \)
\(P = \frac{k_p k_M}{g_p g_M} B \)
\(P = \frac{k_p k_M}{g_p g_M} \frac{A}{K + A} \)
What if more repressors/activators?

We can use binding polynomials:

\[Q = D \frac{1}{1 + K_1A + K_2A^2 + ... + K_nA^n} \]

Empty promoter:

\[D = \frac{1}{1 + K_1A + K_2A^2 + ... + K_nA^n} \]

Promoter bound by 1 activator:

\[B_1 = \frac{K_1A}{1 + K_1A + K_2A^2 + ... + K_nA^n} \]

And so on.
Complete cooperativity on promoter

Promoter: \(k_{ON} (1 - B) A^n = k_{OFF} B \)

\[B = \frac{A^n}{K^n + A^n} \]
\[K = \sqrt{n \frac{k_{OFF}}{k_{ON}}} \]

mRNA:
\[M = \frac{k_M}{g_M} B \]

Protein:
\[P = \frac{k_P}{g_P} M \]
\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} B \]
\[P = \frac{k_P}{g_P} \frac{k_M}{g_M} \frac{A^n}{K^n + A^n} \]
Dynamical systems: Steady states (equilibria)

Equilibrium: when synthesis = degradation

Equation: \[
\frac{dP}{dt} = k - \gamma P = 0
\]

Equilibrium: when time derivative = 0

Equilibrium: when synthesis = degradation

Equilibrium: Protein level = \(P_{eq} = \frac{k}{\gamma} \)
Types of equilibria (steady states)

1. Stable
 \[\frac{d^2 \Phi}{dx^2} < 0 \]
 Return if perturbed

2. Neutral
 \[\frac{d^2 \Phi}{dx^2} = 0 \]
 Equilibrium everywhere

3. Unstable
 \[\frac{d^2 \Phi}{dx^2} > 0 \]
 Depart if perturbed
Synthetic Biology:

Building biological systems for predefined purposes

making oscillators, switches, gates, biofuels, medicine

Electronic components:
(transistors, resistors, capacitors, etc.)

- Standard
- Well-characterized
- Reliable
- Low noise
- No replication

Biological components:
(genes, promoters, RNA-s, etc.)

- Diverse
- Uncharacterized
- Mutate & evolve
- Noisy
- Replication
Toggle switch: design

Gene 1 = lacI
Promoter 1

TetR

Gene 2 = tetR
Promoter 2

ATc

IPTG

Gene 2 ON

IPTG

Gene 1 ON

Toggle switch: dynamics

Equations (ODE system)

Protein 1 = u; Protein 2 = v

\[
\begin{align*}
\frac{du}{dt} &= \frac{\alpha_1}{1 + v^\beta} - u \\
\frac{dv}{dt} &= \frac{\alpha_2}{1 + u^\gamma} - v
\end{align*}
\]

The Repressilator: A synthetic oscillator

Equations (ODE system)

Proteins = \(p_i \); mRNA-s = \(m_i \)

\[
\frac{dm_i}{dt} = -m_i + \frac{\alpha}{1 + p_j^n} + \alpha_0 \\
\frac{dp_i}{dt} = -\beta(p_i - m_i)
\]

\(i = lacI, \text{tetR}, cl \) \\
\(j = cl, lacI, \text{tetR} \)

Repressilator: dynamics

Can we build a gene expression dimmer?

Synthetic genetic switches have been built.

Can we build a genetic dimmer?
Starting with a regulatory cascade

\[
\frac{dx}{dt} = a - bxy
\]

Potential

Higher ATc

rate of change

synthesis degradation

repressor, x

represents the rate of change where synthesis is shown in blue and degradation in red.

Potential graph shows the relationship between reppressor, x, and potential.
NR: dose-response

- Gating
- Mean
- Noise

Fluorescence (a.u.) vs ATc (ng/ml)

- NR
- NR low
- NR high

Normalized cell count vs ATc (ng/ml)

CV vs ATc (ng/ml)
NR: gene expression at intermediate induction
The “Linearizer”

\[
\frac{dx}{dt} \approx aF(x) - bxy
\]

\[
F(x) = \frac{K^n}{K^n + x^n}
\]

TetR represses its own promoter (in addition to the target gene)

- Negative Feedback
- Identical promoters
Comparison: NR and NF mean and CV

Precise gene expression tuner = dimmer

Nevozhay et al., PNAS 106:5123, 2009
NF: gene expression at intermediate induction